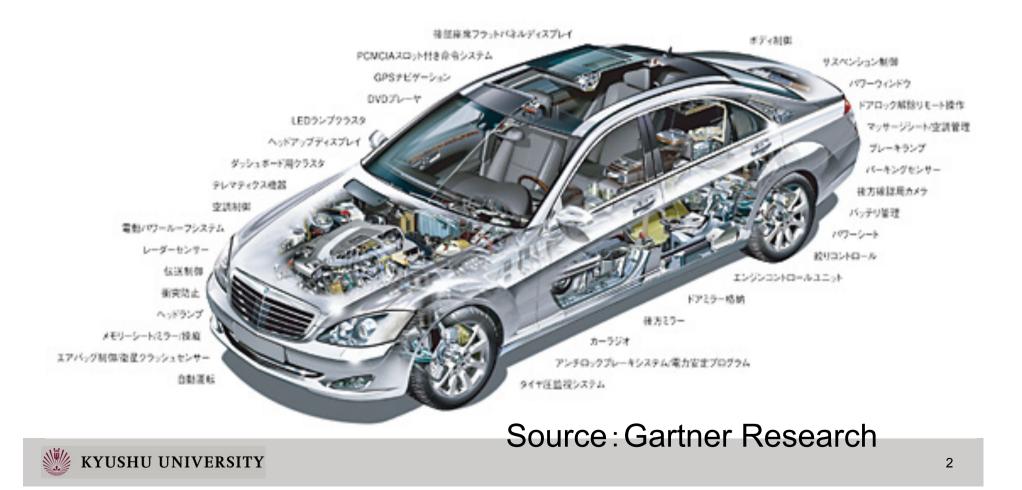
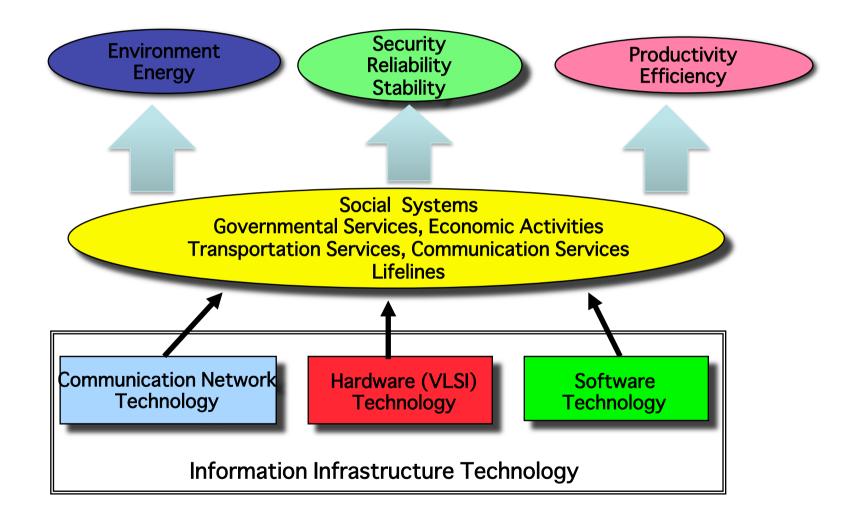
Cybersecurity and Collaborativ Research Projects

Hiroto Yasuura Executive Vice President Kyushu University

Kyushu University 2011 100th Anniversary



Systems become more complicated and hard to control.

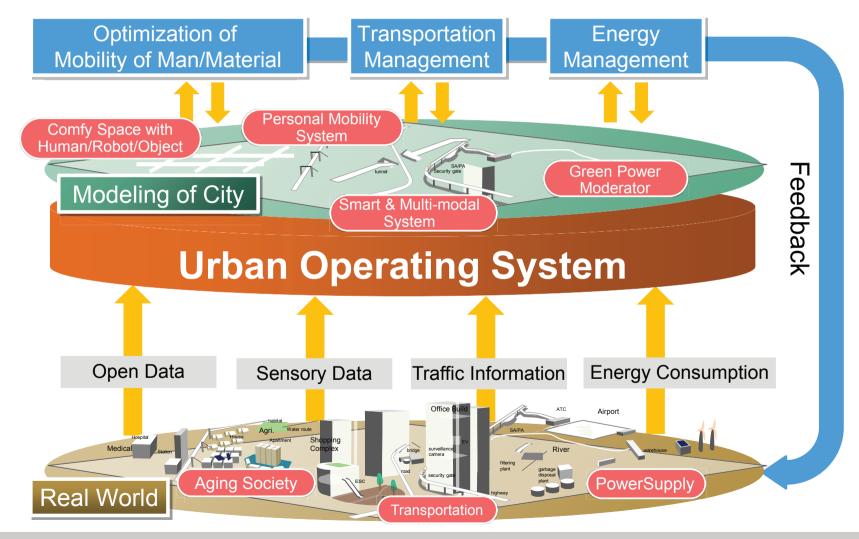


ICT Used Anywhere

Embedded Systems in a Car

Our Society Depends on Information Infrastructure Technologies

Social Information Infrastructure


- Social Information Infrastructure (SII) is a Basic Infrastructure of the Modern Society.
 - SII is related various our daily activities.
 - Life: Transportation System, Health Care System, Life-line Systems
 - Property: e-Commerce, e-Banking, e-Money
 - Privacy: Authentication System, Communication System
 - SII should be dependable for users.
 - Secure and reliable operation
 - Stable operation in many years
 - Failure free operation with allowance of some performance degradation
 - Easy to maintenance
 - Gradual and sustainable improvements

Dependability is the 4-th Value of ICT

- Cost of Systems
- Performance of Systems
- Energy Consumption
- Dependability: Reliability and Security

SII as an Operating System of Society

Threats of Dependability in IIS

Safety from Natural Disasters Natural Phenomena **Physical Malfunctions of Devices** Human Errors Variation of Natural Conditions Malicious Attacks **Soft Errors by Particles (Neutrons etc.) Cross Talks of Communication Channels Incomplete Specification and Misunderstanding of Semantics Mismatches System Specifications and Social Rules Errors of Operators Design Bugs in HW and SW Incomplete Testing and Verification Terrorism and Military Attacks** Theft of Information and Devices Virus, Worms and Hacking Malicious Attacks in System Design, Fabrication and Test **Unintentional Attacks**

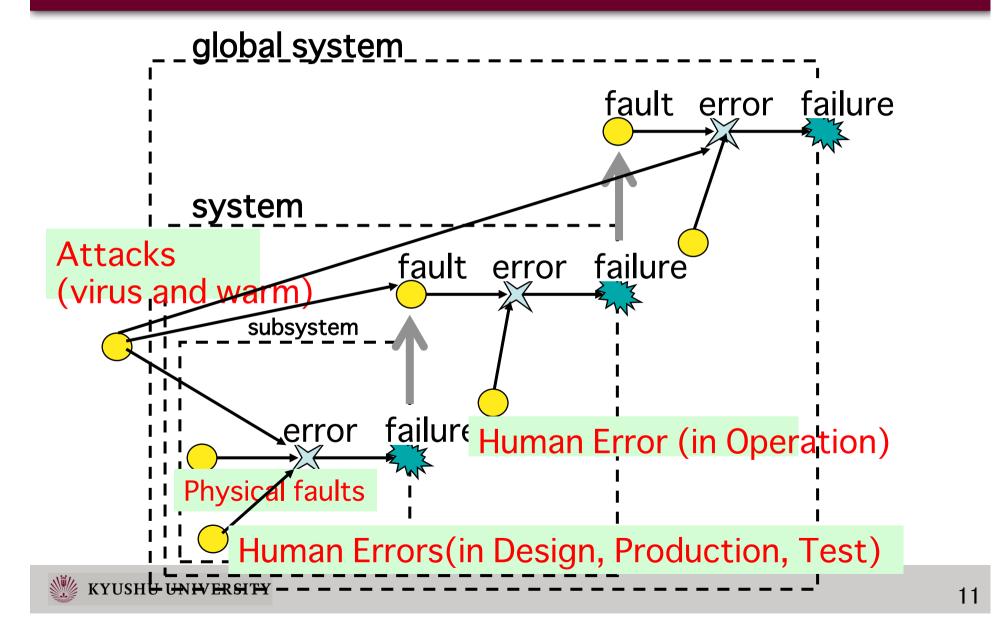
🕌 KYUSHU UNIVERSITY

Threats of Security

- Terrorism and Military Attacks
- Theft of Information and Devices
- Virus, Worms and Hacking
- Malicious Attacks in System Design, Fabrication and Test
- Unintentional Attacks

Possible Threats : Automobile Systems

	Natural Threats	Human Errors	Attack
Plan	•Misunderstanding of Assumption of Usage	•Bug in Specification	•Theft of Plan
Design	•Design Errors	Design Bugs,Errors in Assumptions	•Theft of Design
Fabrication	•Fabrication Errors	 Errors in Fabrication 	•Illegal Operations and Parts
Test	 Intermittent Faults Coverage of Environments 	•Errors in Test	 Illegal Operations
Distribution	•Variation in Environments	•Mixture of Defectives and buggy SW	•Mixture of Counterfeits
Operation	•Ageing and Maintenance •Accidents	•Errors of Drivers and Maintenance	 Attack by ICT
Abandonment		 Miss-Arrangement in Replacement 	•Theft of Logged Information



Difficulty of Security Maintenance

- Complexity of Systems
 - No Information on Total systems
 - Connections of Various Systems
 - Hard to Classify Attacks, Errors and Natural Faults
- Rapid Improvements of Attacking Techniques
 - Wars in Cyber Spaces
 - Crackers and New Crimes
- Mismatches of Social Systems and ICT
 - Unfamiliarity of Users of ICT
 - Walls of Laws and Privacy Protections

Hard to Trace the Cause

Difficulty of Security Maintenance

- Complexity of Systems
 - No Information on Total systems
 - Connection of Various Systems
 - Hard to Classify Attacks, Errors and Natural Faults
- Rapid Improvements of Attacking Techniques
 - Wars in Cyber Spaces
 - Crackers and New Crimes
- Mismatches of Social Systems and ICT
 - Unfamiliarity of Users of ICT
 - Walls of Laws and Privacy Protections

Increase of Malwares

Source: McAfee

Difficulty of Security Maintenance

- Complexity of Systems
 - No Information on Total systems
 - Connection of Various Systems
 - Hard to Classify Attacks, Errors and Natural Faults
- Rapid Improvements of Attacking Techniques
 - Wars in Cyber Spaces
 - Crackers and New Crimes
- Mismatches of Social Systems and ICT
 - Unfamiliarity of Users of ICT
 - Walls of Laws and Privacy Protections

Problem of e-Money

How to handle Credit, Value and Property on ICT. 1,000\$ on a 10\$ Device.

Metal Coins (before BC 10th C) •Value: Gold or Silver Conservation: Metals

•Value: Printed information guaranteed by governments and/or banks.

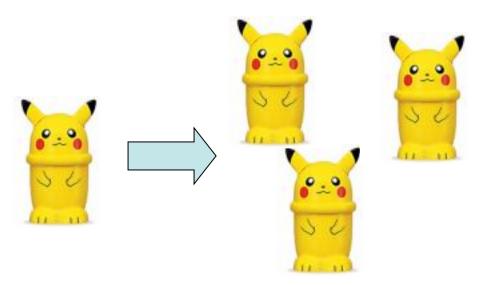
見

木

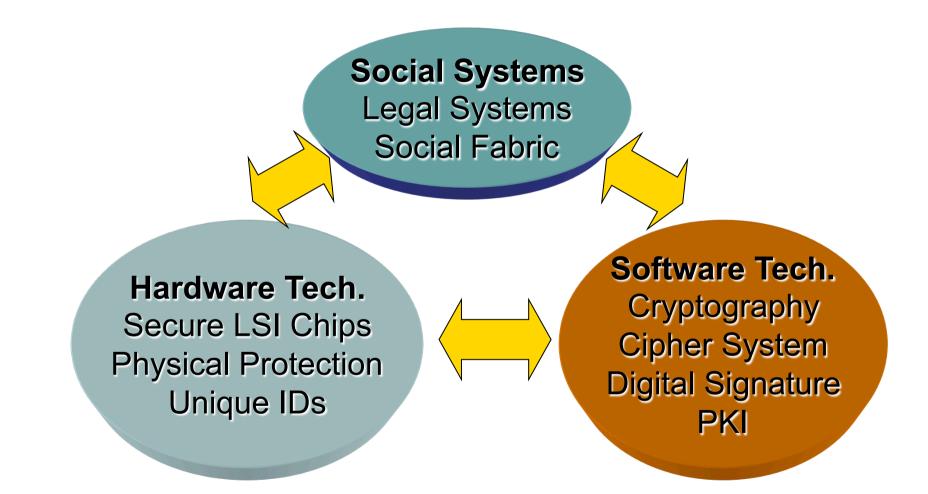
•Conservation: Paper

1,000 years

Electric Money Bit Coin (21st C)


- •Value: Digital Information.
- Conservation: Digital Information?

Kids Knew the Problems


Can we securely treat "values" as copy-free digital information?

- In the game world
 - Illegal copy of PIKACHU
 - Virtual money in online games

Technologies for Security in Cyber Space

Researches on Cybersecurity

Cryptography

- Public key system (RSA, Elliptic Curve etc.)
- Design and Analysis Techniques
- Applications and Standardization

Secure Information System

- Protection from Attacks (Fire walls, Network Structure)

Security in Communication

Secure Protocols

Security for Software

Protections from virus and warms

Security for Hardware

- Anti-tampering
- Protection from Side Channel Attack
- Quantum telecommunication

Collaborations are Required

Social System and Structure	Politician
	Social Scientists
 Social System Design, Regulation by Laws 	Ethics
Service and Operation	Government
 Communication Service, Computing and Data Service 	Business
Product and Work	Economics
 Mobile Devices, Sensors, Wireless Systems, Software, 	Telecom.
Data Contents, Cryptography	Industries
Design and Production Technology	Electronics
 Design Technology, Software Engineering, 	Software
Device Manufacturing	VLSI
_	Manufacturing
Natural Phenomenon and Law	Natural Scientists
 Physics, Information Theory, Mathematics 	Mathematician

Collaboration with Various Sectors

- Academic Sectors
- Governments
- Business and Industrial Sectors
- Social Infrastructure Operators
- Lawyers and Public Security Sectors
- Educational Sectors
- International Organizations
- Military

Backgrounds

- Japan initiated "National Cybersecurity Strategy" program and is committed to lead world as "Cybersecurity Nation".
 - Cybersecurity Basic Act (Nov.12, 2014)
- However, the number of cybersecurity professional is dangerously lacking, and Japanese universities have been offering very few programs and producing very few professionals.
- Kyushu University (KU) is committed to develop comprehensive cybersecurity research and education program.
- KU started BYOD (Bring Your Own Device) system for all undergraduate students from 2013. Cybersecurity education is urgent for all students.

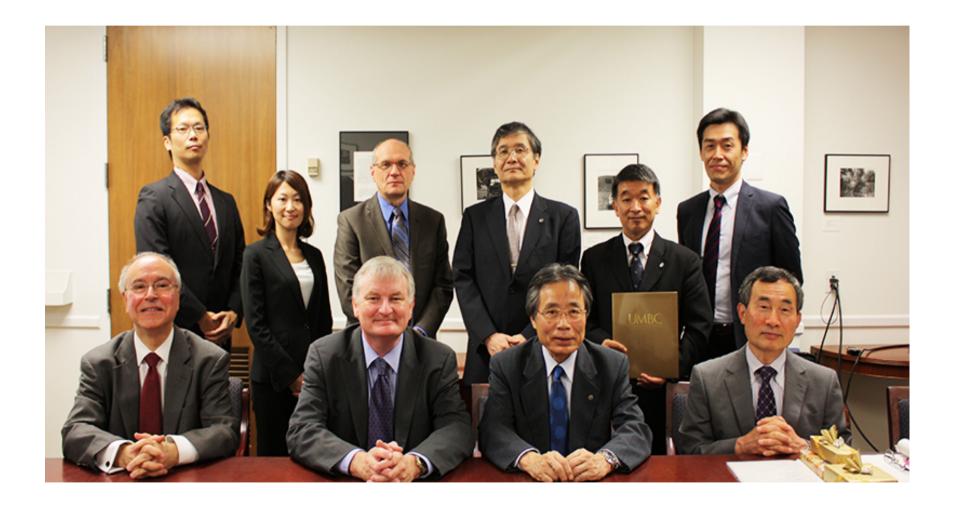
Kyushu University Cybersecurity Center

Body of the Center

- Research Institute for Information Technology
- Graduate School of Information Science and Electrical Engineering
- The Faculty of Arts and Science
- Institute for Mathematics for Industry
- The Faculties of law and Economics

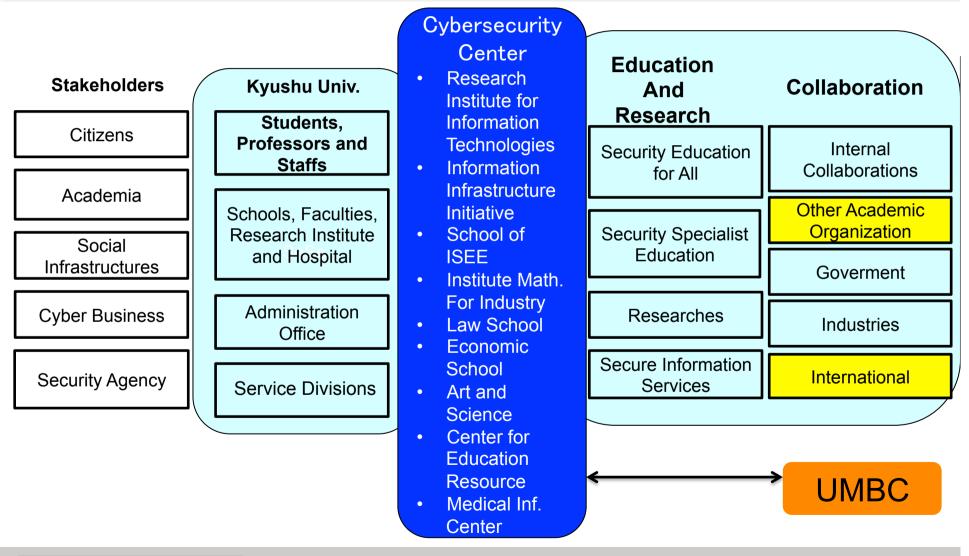
Collaborative Internal Organizations

 Information Infrastructure Initiative, Innovation Center for Education Resources, KU Hospital Medical Information Center


Collaboration Partner

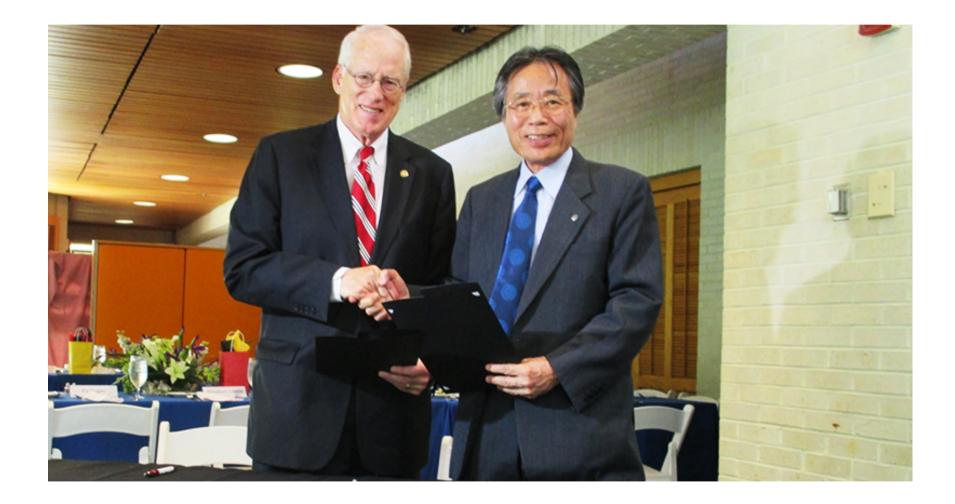
- University of Maryland Baltimore County

Industrial Collaborators


- Companies in telecom, power supply, data business area.

UMBC: Our First and Promising Partner

Collaboration of Cybersecurity Center



Model of Cybersecurity Education

- Cybersecurity for All (2014-)
 - Define basic literacy of cybersecurity for all citizens
 - Teach all freshmen about basic cybersecurity literacy
 - Cybersecurity literacy as a core curriculum for all students
- Cybersecurity for Professionals(2015-)
 - Professional course for cybersecurity talents
 - Undergraduate and Graduate courses in Computer Science, Electrical Engineering and Mathematics
 - Starting from as minor course with certification
 - Leader education in School of International Arts and Science
- Advanced Research and Education on Cybersecurity
 - Involving social scientists and researchers in various fields

Collaboration with Maryland University

Collaboration between UMS and KU

Kyushu University

University of Maryland

- 1. Cyber Security: Education and Research
- Exchange of Students, Teaching Staffs and Researchers
 - Sharing Teaching environment and Materials
 - On-Line Cause Exchange
 - Research Exchanges
- 2. Data Science: for Life Science, Engineering, Social Sciences, Natural Sciences
 - Collaborative Researches
 - Exchange of students

3. Creation of Innovation: Collaboration with Industries in U.S. and

Japan

- Development of New Education for Innovation
 - Social Experiments in Practical Fields

Conclusions

- ICT is changing the world.
- Cybersecurity has become risk of serious and global scale, and has become national security issue.
- It is necessary to develop security technology from application/device level to network/national system level.
- Cybersecurity research and education must be done by multi-aspect and multi-group efforts.

Thank You for Your Collaborations

Cybersecurity as a basic and innovative technology

to keep peace and safety of the future world!

